All Apple Products Launch From Starting History
Get Large View By Clicking On this Image....


How Touch Screen Technology Works

This is for every person who ever wondered how in the world the iPhones touch screen works!! Ill add more to how the GUI works and about the iPhone for all the noobs like me who had no idea how it works. until now...

The basic idea is pretty simple -- when you place your finger or a stylus on the screen, it changes the state that the device is monitoring. In screens that rely on sound or light waves, your finger physically blocks or reflects some of the waves. Capacitive touch-screens use a layer of capacitive material to hold an electrical charge; touching the screen changes the amount of charge at a specific point of contact. In resistive screens, the pressure from your finger causes conductive and resistive layers of circuitry to touch each other, changing the circuits' resistance.


Most of the time, these systems are good at detecting the location of exactly one touch. If you try to touch the screen in several places at once, the results can be erratic. Some screens simply disregard all touches after the first one. Others can detect simultaneous touches, but their software can't calculate the location of each one accurately. There are several reasons for this, including:


Many systems detect changes along an axis or in a specific direction instead of at each point on the screen.
Some screens rely on system-wide averages to determine touch locations.
Some systems take measurements by first establishing a baseline. When you touch the screen, you create a new baseline. Adding another touch causes the system to take a measurement using the wrong baseline as a starting point.


Multi-touch Systems
To allow people to use touch commands that require multiple fingers, the iPhone uses a new arrangement of existing technology. Its touch-sensitive screen includes a layer of capacitive material, just like many other touch-screens. However, the iPhone's capacitors are arranged according to a coordinate system. Its circuitry can sense changes at each point along the grid. In other words, every point on the grid generates its own signal when touched and relays that signal to the iPhone's processor. This allows the phone to determine the location and movement of simultaneous touches in multiple locations. Because of its reliance on this capacitive material, the iPhone works only if you touch it with your fingertip -- it won't work if you use a stylus or wear non-conductive gloves.





Interpreting Touch-location Data

The iPhone's processor and software are central to correctly interpreting input from the touch-screen. The capacitive material sends raw touch-location data to the iPhone's processor. The processor uses software located in the iPhone's memory to interpret the raw data as commands and gestures. Here's what happens:


Signals travel from the touch screen to the processor as electrical impulses.


The processor uses software to analyze the data and determine the features of each touch. This includes size, shape and location of the affected area on the screen. If necessary, the processor arranges touches with similar features into groups. If you move your finger, the processor calculates the difference between the starting point and ending point of your touch.



The processor uses its gesture-interpretation software to determine which gesture you made. It combines your physical movement with information about which application you were using and what the application was doing when you touched the screen.
The processor relays your instructions to the program in use. If necessary, it also sends commands to the iPhone's screen and other hardware. If the raw data doesn't match any applicable gestures or commands, the iPhone disregards it as an extraneous touch.



All these steps happen in an instant -- you see changes in the screen based on your input almost instantly. This process allows you to access and use all of the iPhone's applications with your fingers. We'll look at these programs and the iPhone's other features in more detail in the next section, as well as how the iPhone's cost measures up to its abilities.


What is a mouse?

The mouse is a pointing device which helps us to operate the computer. Unlike the complicated hardwares such as Mother board,RAM, Hardisk, Processor of the computer, the mouse is designed with a simple circuit to process. Now a days, we get varieties of mouse with different technologies in the market.
The developing applications in the computer field has not completely excluded the mouse yet. Although, we have switched to Touchpads in Laptops, "the function of mouse is easy and user-friendly when compared with touch pads for a new user", says the users. Mostly all the applications are operated with mouse for easy working. In recent days, the optical mouse had overcome the old ball mouse, because of its 'easy to use' function.

Disadvantages of Ball mouse

With the previous ball-rolled mouses, the movement of the pointer in the computer  is decided by the ball inside the mouse. So, if the ball gets damaged, or if dust gets clustered, the operation of the mouse becomes problem. When dust gathers, it takes some time to clear it too.With these disadvantages, the ball mouse was slowly moved away form the computer technology leaving the optical mouse to fill its space.

Working of Optical mouse

Now, almost everyone tries to switch from ball/roller mouse to Optical mouse. As the cost of the mouse is also being decreasing, the replacement is quiet quicker.To connect this optical mouse, the necessity is PS/2 or USB plug, and windows, macintosh or LINUX operating system installed in the computer.
The main components of the optical mouse are:
  • Inbuilt optical sensor
  • High speed camera which can take 1000 pictures at a time
  • LED
These optical mouses do have an inbulit optical sensor. The optical sensor reads the movements of the optical mouse (moved by the user) with the help of the light rays which comes out from the bottom. ( The area in which a light glows). When the user moves the optical mouse, the LED (Light Emitting Diode) present inside the mouse emits the light according the minute movements. These movements are send to the camera as light rays. The camera captures the difference in light rays as images. When the camera captures the images, each and every pictures and compared to one another with the digital technology. With the comparison, the speed of the mouse and the direction of the movement of the mouse are rapidly calculated. According to the calculation, the pointer moves on the screen.
  

Comparison between a roller/ball  mouse and optical mouse

  • The optical mouse does not have any movable parts as of the ball mouse. So, the life of the optical mouse is long compared to the ordinary mouse.
  • Since the mouse works with the sensor recognition, the movements are clearly captured and so the moves gives out a same function in all moves.
  • Since the ball is absent in the optical mouse, the weight of the optical mouse is less than that of the ball mouse.
  • The dust clustering problem is abolished in the optical mouse as its parts are all static.
  • The optical mouse can also function good without a mouse pad, which is impossible with ordinary mouses.Any way, optical mouses cannot be used above reflecting glasses or any glass materials.

What is a Network?

A network consists of two or more computers that are linked in order to share resources (such as printers and CDs), exchange files, or allow electronic communications. The computers on a network may be linked through cables, telephone lines, radio waves, satellites, or infrared light beams.
The two basic types of networks include:
You may also see references to a Metropolitan Area Networks (MAN), a Wireless LAN (WLAN), or a Wireless WAN (WWAN).

Local Area Network

A Local Area Network (LAN) is a network that is confined to a relatively small area. It is generally limited to a geographic area such as a writing lab, school, or building. Rarely are LAN computers more than a mile apart.
In a typical LAN configuration, one computer is designated as the file server. It stores all of the software that controls the network, as well as the software that can be shared by the computers attached to the network. Computers connected to the file server are called workstations. The workstations can be less powerful than the file server, and they may have additional software on their hard drives. On many LANs, cables are used to connect the network interface cards in each computer; other LANs may be wireless. See the Topology, Cabling, and Hardware sections of this tutorial for more information on the configuration of a LAN.

Wide Area Network

Wide Area Networks (WANs) connect larger geographic areas, such as Florida, the United States, or the world. Dedicated transoceanic cabling or satellite uplinks may be used to connect this type of network.
Using a WAN, schools in Florida can communicate with places like Tokyo in a matter of minutes, without paying enormous phone bills. A WAN is complicated. It uses multiplexers to connect local and metropolitan networks to global communications networks like the Internet. To users, however, a WAN will not appear to be much different than a LAN.

Advantages of Installing a School Network

  • Speed. Networks provide a very rapid method for sharing and transferring files. Without a network, files are shared by copying them to memory cards or discs, then carrying or sending the discs from one computer to another. This method of transferring files (referred to as sneaker-net) can be very time-consuming.
  • Cost. Networkable versions of many popular software programs are available at considerable savings when compared to buying individually licensed copies.
  • Security. Files and programs on a network can be designated as "copy inhibit," so that you do not have to worry about illegal copying of programs. Also, passwords can be established for specific directories to restrict access to authorized users.
  • Centralized Software Management. One of the greatest benefits of installing a network at a school is the fact that all of the software can be loaded on one computer (the file server). This eliminates that need to spend time and energy installing updates and tracking files on independent computers throughout the building.
  • Resource Sharing. Sharing resources is another advantage of school networks. Most schools cannot afford enough laser printers, fax machines, modems, scanners, and CD players for each computer. However, if these or similar peripherals are added to a network, they can be shared by many users.
  • Electronic Mail. The presence of a network provides the hardware necessary to install an e-mail system. E-mail aids in personal and professional communication for all school personnel, and it facilitates the dissemination of general information to the entire school staff. Electronic mail on a LAN can enable students to communicate with teachers and peers at their own school. If the LAN is connected to the Internet, students can communicate with others throughout the world.
  • Flexible Access. School networks allow students to access their files from computers throughout the school. Students can begin an assignment in their classroom, save part of it on a public access area of the network, then go to the media center after school to finish their work. Students can also work cooperatively through the network.
  • Workgroup Computing. Collaborative software allows many users to work on a document or project concurrently. For example, educators located at various schools within a county could simultaneously contribute their ideas about new curriculum standards to the same document, spreadsheets, or website.

Disadvantages of Installing a School Network

  • Expensive to Install. Although a network will generally save money over time, the initial costs of installation can be prohibitive. Cables, network cards, routers, and software are expensive, and the installation may require the services of a technician.
  • Requires Administrative Time. Proper maintenance of a network requires considerable time and expertise. Many schools have installed a network, only to find that they did not budget for the necessary administrative support.
  • File Server May Fail. Although a file server is no more susceptible to failure than any other computer, when the files server "goes down," the entire network may come to a halt. When this happens, the entire school may lose access to necessary programs and files.
  • Cables May Break. The Topology chapter presents information about the various configurations of cables. Some of the configurations are designed to minimize the inconvenience of a broken cable; with other configurations, one broken cable can stop the entire network.
  • Must Monitor Security Issues. Wireless networks are becoming increasingly common; however, security can be an issue with wireless networks.

How computer RAM works?

Similar to a microprocessor, a memory chip is an integrated circuit (IC) made of millions of transistors and capacitors. In the most common form of computer memory, dynamic random access memory (DRAM), a transistor and a capacitor are paired to create a memory cell, which represents a single bit of data. The capacitor holds the bit of information -- a 0 or a 1. The transistor acts as a switch that lets the control circuitry on the memory chip read the capacitor or change its state.

RAM stands for Random Access Memory. This means Information can be retrieve and store by the computer at any order. RAM gives your computer a temporary place to process electronic data. This means that, RAM chips continue to store information only as long as computer has electrical power. In other words, when you shut off your computer, all the data stored in RAM are lost.
All actual computing starts with the the CPU (Central Processing Unit).

The chipset supports the CPU and contains several controllers that control how information travels between the CPU and other components in the PC.

The memory controller is part of the chipset and establishes the information flow between memory and the CPU.

A bus is a data path that consists of parallel wires and connects the CPU, memory and other devices. The bus architecture determines how much and how fast data can move around the motherboard.

The memory bus goes from the memory controller to the computer's memory sockets. Newer systems have a frontside bus (FSB) from the CPU to main memory and a backside bus (BSB) from the memory controller to L2 cache.

For the PC to get information...

The CPU sends a request to the memory controller to memory and gets a report back of when the information will be available. This cycle can vary in length according to memory speed as well as other factors, such as bus speed.

Residing on the motherboard, the system clock sends a signal to all components, just like a metronome ticking. Each click of the clock represents a clock cycle. A clock running at 100Mhz represents 100 million clock cycles per second. Every action is timed by the clock where different actions require a different number of clock cycles.

Many people assume that the speed of the processor is the speed of the computer. Most of the time, the system bus and other components run at different speeds. Because all information processed by the CPU is written or read from memory, the performance of a system is dramatically affected by how fast information can travel between the CPU and memory. Therefore, faster memory technology contributes greatly to the overall system performance.

Cache memory is a relatively small amount (normally less than 1 MB) of high speed memory and resides very close to the CPU. It is designed to supply the CPU with the most frequently requested data. It takes a fraction of the time, compared to normal memory, to access cache memory.

The concept is that 20% of the time, what is needed is in cache. The cache memory tracks instructions, putting the most frequent used instruction at the top of the list. Once the cache is full, the lowest need is dropped.

Today, most cache memory is incorporated in the CPU. It can also be located just outside of the CPU. Cache that is closest to the CPU is labeled Level 1, the next closest Lever 2, etc.

Interleaving is a process in which the CPU alternates between two or more memory banks. Every time the CPU addresses a memory bank, the bank needs about one clock cycle to reset. The CPU can save processing time by addressing a second bank while the first bank is resetting.